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An asymptotic description is proposed for supersonic laminar flow over a wedge 
or a backward-facing step, for large Reynolds number and for a base or step 
height which is small compared with the boundary-layer length. The analysis 
is carried out for adiabatic wall conditions and a viscosity coefficient proportional 
to temperature. In  a particular limit corresponding to a very thick boundary 
layer, a similarity law is obtained for the base pressure &,. For a thinner boundary 
layer an asymptotic form for p ,  is obtained which shows the dependence on 
the parameters explicitly and which permits good agreement with experiment. 
This latter result is based on an inviscid-flow approximation for the corner 
expansion and for reattachment, with viscous forces important primarily in 
a thin sublayer about the dividing streamline. A prediction of the pressure dis- 
tribution a t  reattachment is given and the result is compared with experimental 
pressure distributions. 

1. Introduction 
The interaction of a laminar boundary layer with the external stream has 

generally been studied by use of the boundary-layer equations coupled with a 
pressure-angle relation supplied by a solution for the external flow. In  par- 
ticular, for the case of an oblique shock wave incident upon a laminar boundary 
layer, this idea has been used by many investigators to predict that the initial 
pressure rise near separation is O(R-4). Stewartson & Williams (1969) have 
studied the details of this pressure rise by introducing suitable asymptotic 
representations to characterize the flow near separation. The procedure shows 
that a pressure rise O(R-4) extends over a streamwise distance O(R-Q), that 
a sublayer of thickness O(R-9) should be described by boundary-layer equations 
and that the remainder of the boundary layer experiences primarily a displace- 
ment effect resulting from the deceleration of fluid in the sublayer. Feo (1970) 
developed the same flow model and also suggested asymptotic descriptions for 
the separated shear layer and for the reattachment region just downstream of 
the shock wave. 
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On the other hand, for a slender wedge or a backward-facing step in supersonic 
flow, a systematic method of choosing an approximate problem formulation for 
the flow just downstream has not yet become obvious. For example, Golik, 
Webb & Lees (1967) and Holt & Meng (1968) retained the boundary-layer 
equations for the entire separated-flow region, with a pressure-angle relation 
added. Chapman, Kuehn & Larson (1958) postulated a thin shear layer described 
by the mixing of the external flow with fluid at  rest, and Denison & Baum (1963) 
later included the effect of a non-zero initial boundary-layer thickness. Chang & 
Messiter (1968) and Burggraf (1970) also used boundary-layer equations in a thin 
separated shear layer, and assumed uniform vorticity in the recirculating flow; 
it was suggested that reattachment might be described by inviscid-flow equations. 
Weiss (1967) gave a solution based on the method of characteristics for most of 
the separated shear layer, boundary-layer equations for a thin sublayer adjacent 
to the dividing streamline and a finite-difference calculation for the full Navier- 
Stokes equations in the recirculation region. A comprehensive review of these 
and other analyses has been given by Berger (1971). 

In  an attempt to provide a rational basis for the analysis of such flows, an 
asymptotic approximation is proposed here for laminar flow over a wedge or a 
backward-facing step, in the limit as the ratio of base or step height to boundary- 
layer length approaches zero and the Reynolds number approaches infinity 
(Hough 1972). In $ 2  the flow behind a wedge or step is described by the 
formulation of Stewartson & Williams (1969) for the case of a thick boundary 
layer such that the base height is of the sanie order as the sublayer thickness. 
Among the consequences is a similarity law for the base pressure in terms of 
a parameter A which measures the ratio of base height to sublayer thickness. 
If it is assumed that the base-pressure coefficient is independent of Reynolds 
number as A -+ cn, there follows an explicit form for the base pressure in the 
case of a thinner boundary layer, which is then compared with suitably 
correlated experimental data. The same result for large A is rederived in 3 3 by 
use of an asymptotic flow model which is a refinement of the model proposed by 
Burggraf (1970) and by Chang & Messiter (1968). In this approximation a thin 
separated shear layer has a velocity profile which is nearly unchanged over its 
length except in a sublayer about the dividing streamline. The base pressure is 
determined by the criterion that the separated shear layer be long enough that 
the pressure rise required at  reattachment to cancel the increased velocity on 
the dividing streamline be the same as the pressure rise corresponding to the 
turning of the external flow. This condition is similar in part to that of Chapman 
et al. (1958), but a quite different estimate is proposed for the velocity at  the 
dividing streamline. The reattachment model is described in 9 4, and an integral 
equation for the pressure is given, identical in form to the result for boundary- 
layer blowing obtained by Cole & Aroesty (1967). Much of the formulation of 
$$ 3 and 4 was proposed in a different context by Peo (1970) for describing the 
interaction of a laminar boundary layer and an incident oblique shock wave. 
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2. Asymptotic similarity law for the base pressure 
A first step towards a method of predicting the base pressure can be deduced 

by making reference to known results for the interaction of an oblique shock 
wave with a laminar boundary layer. For these interactions, experiment shows 
that separation can occur a t  a considerable distance upstream from the shock. 
The accompanying small pressure rise is followed by a region of nearly constant 
pressure which extends approximately to the shock wave. Just downstream of 
the shock, a further pressure rise occurs, and is much larger than the initial 
change unless the shock wave is quite weak (see, for example, Hakkinen et al. 
1959). The analysis of Stewartson & Williams (1969) provides an asymptotic 
description of the small upstream region near separation, for a laminar boundary 
layer in the limit of large Reynolds number. Their analysis will be summarized 
below and then reformulated for application to the flow behind a wedge or 
ba ckward-fa cing step . 

The proper forms of asymptotic expansion are found by assuming that a small 
pressure change occurs over a distance which is small compared with the 
boundary -layer length but large compared with the boundary -layer thickness. 
Relative changes in velocity are small except in a very thin sublayer adjacent to 
the wall. Here the pressure, viscous and inertia forces are all of the same order, 
and the case studied is that for which the relative changes in velocity can be 
large enough for separation to occur. For large values of the transverse sublayer 
co-ordinate, the velocity has a linear form which matches with the undisturbed 
velocity profile for small values of the usuaI transverse boundary-layer co- 
ordinate. In  turn, as this latter co-ordinate becomes large, the pressure and flow 
deflexion are related according to the prediction of small perturbation theory 
for the inviscid external flow. 

Specialization of the results of Stewartson & Williams for a linear viscosity 
law and adiabatic wall conditions suggests the co-ordinate transformations 

x = aF(M2, - I)% [I + $(y - 1) MZ1-3 Rb/L ,  

y = a!(M? - I)* [I + &(y - 1) M 3 - 3  R + y p  
(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

and the asymptotic representations 
- U/U N at(M2,- l)-*[I+$(y- 1)M2,]*R-h1(x,y)+ ..., 
v/ u N af(M2, - I)+ [ 1 + $(y - I )  M",+ R-b,(x, y) + . . . ) 

j j / j j ,  N 1 + at(M2, - l)-i y M 5  R-ipl(x) j- . . . . 
Here x: and ?j are rectangular co-ordinates along and normal to the free-stream 
direction respectively, with origin a t  a point on the wall near the shock wave, 
such thatx = O( 1) in the region of interest; G and V are velocity components in the 
2 and ij directions respectively; ji is the static pressure; R = Prn UL[,E,; L is the 
boundary-layer length or wedge length; U ,  jj,, jjrn, M, and Prn are the free-stream 
values of the velocity, pressure, density, Mach number and viscosity coefficient 
respectively; and a1 = 0.332 for an assumed Blasius profile just upstream of the 
interaction. 
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In  terms of these variables the problem is 

and A .  Peo 

(2.6) 

u1 Y, V1/% P1 as Y;+ 0, (W, (2.9) 

(2.10) u1(x,0) = Vl(X,O) = 0. 

Equations (2.6), (2.7), (2.8) and (2.10) describe a boundary-layer flow in a sub- 
layer having thickness Ay/L = O(R-9), with linear velocity variation at  large 
distances (in terms of y) from the wall. In  the remainder of the boundary layer 
the initial velocity profile experiences only small perturbations, SO that (2.8) 
describes a matching with the undisturbed profile for RQg/L -+ co and R$yIL -+ 0. 
Equation (2.9) implies that not only the pressure perturbation but also the flow 
deflexion at a given x is constant (to order RA)  across the remainder of the 
boundary layer, so that the pressure-angle relation of linear inviscid-flow theory 
for the external flow can also be used just outside the sublayer. That is, the 
streamlines in most of the boundary layer experience a small outward displace- 
ment by an amount equal to the increase in displacement thickness of the sub- 
layer. The length of this interaction region is given by AXIL = O(R-#). 

Now suppose that the change in pressure is caused not by an incident shock 
wave but by a discontinuity in wall shape in the form of a backward-facing step. 
If the step height h is of the same order as the sublayer thickness, O(R-SL), then 
h is also of the same order as the streamline displacement in the sublayer for the 
shock-wave problem. Thus the formulation of (2.6)-(2.9) is again applicable, 
with (2.10) replaced by 

(2.11) I ul(x,A) = v,(x,A) = 0 (X < 0 ) ,  

u1(x,0) = v,(x,O) = 0 (x > O ) ,  

where A = (0.332)%(M~-1)6[1+&y-l)M2,]-8~Rf+, T =  h/L. (2.12) 

The solution therefore depends only on the stretched co-ordinates and on the 
parameter A. Experimental results show that the pressure is nearly constant 
across the face of the step, consistent with p1 = p l ( z )  in (2.5). Thus a non- 
dimensional pressure change a t  the step can be defined by P(A)  =pI(O;A), 
a function only of A, and the corresponding value j?ib of the base pressure has 
the form 

p,/pco N 1+(0.332)~(M2,-1)-~yN2,R~P(A)+ .... (2.13) 

A numerical solution clearly would have to take into account the singular be- 
haviour a t  x = 0. For small positive values of z such that Z/L = O(R-%) the flow 
should probably be described as the mixing of a prescribed shear flow for y > A 
with fluid nearly at rest for 0 < y < A. These details are not expected to change 
the form of the result (2.13). 

For a very slender wedge at zero incidence in a supersonic stream a similar 
problem can be formulated. If L is the wedge length and 2h the base height, then 
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T = h/L measures the wedge half-angle and the analogous case again corresponds 
to r = O(R-%). Equations (2.6)-(2.9) apply, but (2.10) is replaced by 

(2.14) 

Sinoe the wake length is asymptotically small in comparison with the wedge 
length, the wedge surface is approximated in (2.14) by y = A. A similarity law of 
the form (2.13) is again obtained. 

Plows such that R-Q < h/L < 1 are probably of greater interest. It is known from 
experiment that for moderate values of M, the base pressure ?s, is nearly in- 
dependent of Reynolds number. If we consider (2.13) and postulate Reynolds- 
number independence for A -+ 00, it follows from (2.12) and (2.13) that 

P(A)  N -k,A%, (2.15) 

where k, > 0 might be estimated from a suitable correlation of experimental data 
or might be determined from a suitable numerical solution. Then 

1 u ~ ( x ,  A) = v ~ ( x ,  A) = 0 (X < 0) ,  

azll(X,o)/a2J = V,(X,O) = 0 (x > 0). 

(j5bh,)-l N -k0(0*332)?(M%-l)-*[1+4(~- l)M%]-%?/iM%(h/L)z. (2.16) 

The result (2.16) is expected to be the first term in an asymptotic expansion of 
(pb - j3,)/pm as r -+ 0 and R -+ co with A -+ 00 and M, fixed. An alternative form 
is available in terms of the boundary-layer thickness S at the base. Using 
h/L = (h/S) (S/L), R, = Pm Uh/,Z, and S/L = O(R-&), one might rewrite (2.16) as 

(2.17) 

where R*S/L is a function of M, and depends on the definition chosen for 6. 
Another modified form for (2.13) and (2.16) is obtained if M, -+ 00 as r --f 0 and 
R -+ co such that Mar -+ 0 and x -+ 0. Were M,T is the hypersonic small dis- 
turbance parameter and x is the viscous interaction parameter, taken equal to 
M3,/R* for the assumed linear viscosity law. The restriction on Moor and x 
follows for several reasons, possibly the most obvious being the assumption 
(jj, - jjb)/jj, < 1 leading to a linear pressure-angle relation for the external flow. 
For M, large in this sense, (2.13) still applies and, since A = O(M,r/x%), can be 
written in the form 

(%/pa)- (Mmr) 'P(Mmr/xQ),  (2.18) 

where 

For A -+ 00, it  follows from comparison of (2.16) and (2.18) that 

F = (0*332)4y(N,r/x~)-3P{(0.332)%2)(y- l)-) (M,r/x*)}. 

P --+ - k,(0*332)* (y - 1)-32f,. 

Experimental data given in several references are shown in figure 1 by a plot 
of P vs. A% for comparison with the prediction of (2.15). The data presented 
include representative values €rom each of the references, for 0.03 5 r ,S 0.14, 
2.0 5 M, 5 4.5 and 1.7 x lo4 5 R 5 22 x 104, such that transition to turbulence 
appears to have occurred downstream of reattachment for all of the values used. 
The measurements of Chapman et al. (1958) showed that as R increases a fairly 

P L M  39 
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FIGURE 1. Base-pressure correlation according to  asymptotic formula (2.15). Data for 
backward-facing step : v, Chapman et al. (1958) ; 0 ,  Hama (1968) ; A, Rom (1966). Data 
for wedge: 0, Charwat & Yakura (1958); 0, Hama (1968). 

sharp drop in jib begins when transition first occurs upstream of reattachment; 
values showing this decrease have been omitted from figure 1. Measurements 
taken a t  higher Mach numbers, such as those of Batt & Kubota (1968) for 
Jf6, M 6.0 and T = 0.1745, have also been omitted because Mar is not small, as 
is required by the theory; the resulting values of P would be found to lie some- 
what below those plotted in figure 1. For the data shown, the correlation is 
rather good and a straight line could be drawn to pass within about & 10 yo of 
all the points. The typical error is smaller than that for the empirical correlation 
proposed by Su & Wu (1971). On the other hand, since 0.24 5 ( j im -p,)/pm 5 0.64 
for the data of figure 1, the assumption that pressure changes are small should 
be questioned. It is found that the data for the largest values of iWmr tend to lie 
near the bottom ofthe band of points shown, and so a small dependence on Mar 
is still evident. Finally, Hama’s measurements taken alone show that the base 
pressure for a wedge is slightly lower than that for a backward-facing step, but 
the correlation in figure 1 of data from several sources does not show a clear dis- 
tinction between results for steps and for wedges. I n  the next section the limit 
A + CQ is considered from another viewpoint, in order to describe the main 
features of the flow in somewhat greater detail, to establish (2.16) more directly 
and to show an easy way of improving the correlation of the base-pressure data. 
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3. Base pressure for a thin shear layer 
For moderate values of the Mach number, it is known from experimental 

observation that the separated shear layer can be quite thin and is nearly 
straight for most of its length. Thus the corner expansion is completed in a 
relatively short distance, and the same can be true for the recompression near 
the rear stagnation point. One may therefore anticipate that these pressure 
changes can be predicted to a good approximation by inviscid-flow equations. 
Qualitative considerations of this kind are used below to suggest the asymptotic 
flow description which is believed to be correct in the limit as r -+ 0 and R -+ co 
with Jl, fixed and A -+ 00. It is shown later that the proposed model is self- 
consistent. 

In  a small region extending slightly upstream and downstream from the corner, 
the pressure gradient and acceleration are quite large, whereas viscous forces are 
of the same order as in the upstream boundary layer and so can be neglected, 
except very close to the separation streamline $ = 0. As noted by Hama (1968) 
and others, a ‘lip’ shock wave, associated with an overexpansion of the flow, 
originates in this small region; the shock is weak if the pressure change 
(j!j,,,-pb)/j?jrn is small. Thus the corner expansion of the boundary layer is de- 
scribed approximately by the differential equations for inviscid flow and the 
entropy remains nearly constant along each streamline except in a thin sublayer 
where viscous stresses cannot be ignored. 

Similarly, if the shear layer remains thin, reattachment should be expected to 
occur in a short distance which can be expressed in terms of the small parameters 
r and R-1. Again viscous forces are much smaller than pressure forces in most of 
the shear layer and entropy is nearly constant along each streamline. Further- 
more, if (pm-f ib) /pa is tentatively assumed small, it can be anticipated that 
the streamline inclination and curvature remain small in the reattachment region, 
so that the transverse pressure gradient aj3laJ may be neglected in a first approxi- 
mation. Thus, for example, the maximum external-flow pressure equals the 
maximum pressure on the dividing streamline 3 = 0, which of course occurs a t  
the stagnation point. If the possibility of a pressure overshoot above the free- 
stream value is neglected, then the pressure rise calculated from the turning of 
the external flow should be equal to the pressure rise calculated by considering 
the velocity along the dividing streamline to be brought to zero isentropically. 
Thus in this approximation the pressure rise along 3 = 0 is completed just at 
reattachment, as was originally proposed by Chapman et aZ. (1958). Burggraf 
(1970) also considered this feature to be correct asymptotically as R -+ CO. His 
numerical solutions of the inviscid-flow equations in the recompression region 
tend to confirm the assumption that aj5/a?j - 0 there, and imply that the limiting 
solution for R --f 03 does not show a pressure overshoot. 

Chapman et aZ. (1958) calculated the velocity along $ = 0 by assuming a mixing 
of the external flow with nearly stagnant recirculating flow, neglecting the initial 
boundary-layer thickness and thus in effect assuming a sufficiently long shear 
layer. The result gives (pa -pb)/pa -+ constant a s  r = h/L -+ 0. However, the 
calculation does not include the pressure-angle relation for the external flow. 

39-2 
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If the length of the shear layer is much larger than the step or base height h, the 
flow inclination is asymptotically small in terms of r and so (pm - p b ) / p m  -+ 0 as 
r --f 0. This conclusion will follow from the rederivation of (2.16) below. Denison & 
Baum (1963) carried out a shear-layer calculation which did take into account 
the initial boundary-layer thickness but neglected the initial velocity on the 
dividing streamline 9 = 0 resulting from the corner expansion. Burggraf (1970) 
used the correct initial profile and calculated the velocity on the dividing stream- 
line by use of Batchelor's (1956) model of a constant-vorticity recirculating flow 
bounded by thin viscous shear layers. It is argued below that the use of a correct 
initial profile and a simple-wave representation for the external flow leads quite 
directly to (2.16). 

For most of its thickness, the separated shear layer a short distance downstream 
from the corner has a velocity profile represented by the upstream Blasius 
profile plus a small perturbation AU/U = 0{(j3,- j7b)/pm}.  Here we have antici- 
pated that (pm-pb)/Pm + 0 as r + 0, R 3 co and rRQ 3 00. As R*(Tj- h ) / L  3 0,  
the upstream profile has the form U/U - al(y - h) {POL/@, U)}-k, or 

El U - {2a1 R4$/(pm UL)p ,  
where pU = a$/aji and Po and Po are stagnation values at  = 0. As 

R*F/(pm U L )  --f 0, 

the relative change in velocity is Au/U = O{[(pm - pb)/pm]*}. Thus, for 

(Y--h)lL = o{R-B[(pm -pb)/Pml '] ,  

AU/U is no longer small, and the velocity somewhat downstream from the 
corner is obtained from the Bernoulli equation as 

E21uJ2 - 2alR*$/(pm U L )  +2(pm-pb)/po u2. (3.1) 
The viscous sublayer near the corner has thickness 6 = O{(ji,AS/p,U)*}, where 
A% is the length of the region in which most of the corner expansion occurs, pre- 
sumably O(R-*L) if (pm-pb) /pm 9 R-a. Since ii/U = 0{[(pm-pb)/pm]*} near 
@ = 0, this thickness Sis of order R-2{(pm - pb)/P,}-'L, smaller than the thickness 
of the region in which (3.1) applies. The viscous sublayer which develops about 
@ = 0 downstream then is described initially as the merging of a nearly uniform 
Bow above, at speed [2(Pm -&)/pol*, with fluid below which is nearly at  rest. 
The initial profile for the separated shear layer is labelled i in figure 2. 

Immediately after the corner expansion is completed the velocity at 3 = 0 
is denoted by E d (  and the velocity just above the sublayer, for 

- 

- 

Rg(@m - Pb)/@m}-* (5 - h)/L --f 
but { ( ~ m - p b ) / p m } a R Q ( y - h ) / L  

is denoted by Eei, where GEi = 2(j7m-jib)/p0. The approximate similarity solution 
(e.g. Chapman et al. 1958) gives ?id{ = 0-587Uei. According to this solution, the 
sublayer thickness 6 initially grows as {poii?/(poGei)}* and the increase in an 
' effective' Ze is therefore proportional to a l { ~ o ~ / ( p o U e i ) } ~  {Po L/(p0 U))-* because 
U is linear in 5 - h above the sublayer. If one anticipates that the velocity change 
i i d - i &  along 3 = o is approximately proportional to iie-zei, it follows that 
initially ?id = Udi+ constant x a,(Z/L)k (Uei/U)-k. This can be demonstrated in 
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+--- O(T3L) -4 
FIGURE 2. Development of shear- ayer velocity profile. 

a more careful way by the procedure first used by Goldstein (1930) in several 
related problems. By introducing what now would be called inner and outer 
asymptotic expansions of co-ordinate type, one finds the result for U,-Uai 
directly. 

If entropy changes are neglected and r < (pa - ji,,)/3ja < 1, the pressure rise at 
reattachment is asymptotically equal to the pressure drop at  the corner. Since the 
fluid along 9 = 0 is brought to rest isentropically, it follows that pa - jf+, N ipoE&,  
where Udf  is the value of Ua a t  the end of the shear layer. Therefore Ear = Get 
and the length Zf of the shear layer must be at  least large enough that the per- 
turbation (Ed - iiai)/iiai is no longer small. If Zf were too large, then the matching 
condition as the sublayer co-ordinate (3 - h)/S becomes large would be 

U - ul(ij - h)  {&L/(&, U))-i U 

rather than U - Uei.  The sublayer thickness S would grow as 24 rather than &, 
and E d  would become too large. Therefore we choose X f  to be of the order for 
which the perturbation in iia first becomes of the same order as Ed,, and for which 
the two terms in (3.1) are of the same order when @ = O(S), so that a similarity 
solution is no longer appropriate. In  this case 

a,(Z,/L)B (zei/U)-i = constant x zei/U 

= constant x (2(pa - pa)/pm Uz>4 (pm/p,,)9. (3.2) 
In  the small angle approximation 

- h/L  Pm u2r XI,-, 
L - 0, (M2, - l ) 4  (pa  -pb )  ’ (3.3) 
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where 8, < 0 is the shear-layer deflexion angle. Elimination of Xf/L leads directly 
to (2.16): 

pb/pm N l - I c , a ~ ( M ~ - I ) - + [ l + ~ ( y -  I)M2,]-%yH2,7%. 

Also it follows that 
E;f/ u2 N 2 4  lC&/L)%. (3.4) 

The general form of the final profile is sketched in figure 2, with the labelf. 
Thus (2.16) has an important interpetation as the base-pressure prediction 

which follows from a modified version of Chapman’s model. The final value of 
total pressure a t  the dividing streamline is taken equal t o  the pressure change in 
the external flow close to reattachment, but the estimate of the velocity along 
+ = 0 is different from Chapman’s. The non-zero velocity in the recirculating 
flow below the sublayer will also contribute to the velocity increase along 3 = 0 
but need not change the dependence on the parameters. The constant of pro- 
portionality k, in (2.16) remains to be determined. 

A t  this point it is possible to show self-consistency by noting that the viscous 
stress really is of higher order in a small reattachment region. It was concluded 
above that the pressure change is (pm --pb)/pm = O ( d ) ,  the1 velocity in the 
sublayer is Z/U = 0(d)  and the shear-layer inclination 8, N @/E = O(T%). The 
distance from the base to the rear stagnation point is h/ - 8, = O(7gL) and the 
sublayer thickness follows from a balance of inertia and viscous forces as 

- 

AylL = O(R-*d). 

Since the length of the separated shear layer is much smaller than L, the velocity 
profile above the sublayer remains approximately the Blasius profile up to and 
beyond reattachment. The distance A2 required for the reattachment pressure 
rise is found from the continuity equation for the sublayer to be 

AZ/L = O ( R - * d ) .  

Thus the pressure gradient here is dP/dX = 0(R3dpm V / L )  whereas the viscous 
stress is ,iia2ii/ay2 = 0(rdjim U2/L) .  As anticipated, the viscous stress is negligible 
if r 9 R-4. 

A first correction to (2.16) can be derived if additional terms are retained in the 
two calculations of the pressure rise a t  reattachment. The second-order expression 
for a simple-wave compression gives 

For isentropic compression along = 0, 

(3.5) 

= i ( y -  1)M2,[1 ++(y- I)M:]-12af( -7/8,)+kj, (3.7) 
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where Mdf,  pdf and pol are the values of Mach number, density and stagnation 
density immediately before the recompression begins. The substitution of (3.4) 
in the derivation of (3.7) assumes that second-order terms in U along 3 = 0 are 
not as large numerically as the correction terms arising from (3.5) and the left 
side of (3.6), each of which can be as large as 20 yo of the leading term for some 
of the data in figure I. Still another higher order term would appear if the second 
term in P(A)  as A +- 00 were O( l), corresponding to a term O(R-4) in (pw - Pb)/j3,. 

Expanding the left side of (3.7) and combining with ( 3 4 ,  and allowing the 
possibility of a term O(1) in P, one finds the corrected form of (2.15) as 

P+ - - k,RQ + k,, (3.8) 

where (3.9) 

Inversion, with P defined by (2.13), gives the corresponding modification of 
(2.16) for the base pressure : 

Equation (3.10) clearly is not correct when M, is close t o  1. For M, --f 1 
Messiter, Feo & Melnik (1971) noted that a formulation analogous to that of 
Stewartson & Williams (1969) implies a similarity parameter ( N t  - 1)IR-i. I n  
the present context the ratio of step height to sublayer thickness for M, near 
one is 0(7/R-%), and a similarity parameter independent of R can be formed 
from these two ratios as K = (M2, - I)/?*. The transonic base-flow problem might 
therefore be defined by r +- 0, Nw + 1 and R + co with T/R-" 6 -+ co and K fixed. 
The significance of this latter parameter is confirmed by the fact that the second 
term in (3.10) is asymptotically smaller than the first only if K + CO. The antici- 
pated form for j$, is 

( P b / p w )  - 1 - &(K) 7' -kfz(K) 7% + . + g,(K) R-fr + . . . . (3.11) 

For a simple wave, expansion as I l l ,  +- I gives 

where M is the Mach number in the external flow just above the separated shear 
layer. For isentropic compression of the external flow, M is approximated in 
terms of p b  by 

The largest terms in (3.7) give 
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FIGURE 3. Base-pressure correlation according to second-order approximation (3.8). Data 
for backward-facing step: V, Chapman et al. (1958); 0 ,  Hama (1968); A, Rom (1966). 
Data for wedge: 0, Charwat & Yakura (1958); 0, Hama (1968). 

Retaining the largest terms of (3.12)-(3.14), one can obtain an implicit equation 

A second-order result can be obtained in terms of the solution to (3.15). I n  (3.11) 
the exact result for f , (K) and an approximation for f , (K) may therefore be 
regarded as known. It can be verified that the f i s t  two terms of f , (K) 79 as 
K = (HL - l)/d 3 co agree with the corresponding terms in (3.10) as Ma -+ 1. 

For all the data in figure 1, K is large enough that (3.10) may be used. A modi- 
fied correlation of these data is given in figure 3 by a plot of P+ z)s. A%. Comparison 
of the two figures shows that the error arising from omitting higher order terms 
in (pm -j ib)/pm is not a serious one. However, the correlation in figure 3 is better 
because the wedge data (open points) are now more clearly separated from the 
step data (filled points). The value for the slope k,, estimated from figure 3 has 
been increased by 10 or 15% and is given approximately by k, M 0.8 for both 
steps and wedges. The value for a wedge should be equal to or greater than that 
for a step since pb for a step is expected to  be slightly larger for all A (see, for 
example, Hama 1968). The wedge data seem to suggest that Ic, =k 0, implying 
a term O(R-2) in (pm - &)/jijm, but the scatter of points is too great to permit a 
definite conclusion. Moreover, effects of higher order terms in (3.5) and (3.7) 
and of viscous interaction can each be shown to change (pa -pb)/jim by a few 
more per cent. The data of Batt & Kubota (1968) would be about 20 % low in 
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figure 3, because the second-order corrections to (3.5) and (3.7) are not adequate 
for Mwr = O(1) and also because for Mwr = O(1) the sublayer thickness is no 
longer small compared with the overall shear-layer thickness. 

If the shear layer were long enough, the value of k, could be estimated by 
approximating the sublayer flow about $ = 0 as the mixing of a uniform shear 
flow above with recirculating fluid below. If, further, the velocity of the re- 
circulating flow is taken to be zero, the stream function is approximated by the 
similarity form 

$/UL = R-t(Z/L)*~tf(r) ,  = ai(po/j5m) RJ(g/L) (Z/L)-t, (3.16) 

where 5 and ij are now measured along and normal to $ = 0 respectively. It 
can be shown that this assumed form of would lead to the same orders of 
magnitude as were found using (3.2). The function f i n  (3.16) satisfies 

- 

f ” + # j j ” ’ - + f ’ 2  = 0, f ” ( ~ )  = 1, f(0) = 0, f’(-m) = 0. (3.17) 

The numerical solution of Rott & Hakkinen (1965) gives f ’ ( 0 )  = 0.934. The 
approximation (3.4) for ZCdr/U implies that 

Ic, = [+f’2(0)]f  = 0.61. (3.18) 

It would seem that this value is necessarily low (as confirmed by figure 3) 
because iidr and the velocity of the recirculating flow have been neglected. The 
numerical calculations of Denison & Baum (1963) would lead to a low value of 
k, for the same reasons, and their prediction of (Fa -&,)/pa would be corre- 
spondingly low. Moreover, their shear layer is somewhat too long, and the pre- 
dicted ( p a  - p b ) / j &  is further reduced because the sublayer thickness is too large 
and the effective a1 is therefore somewhat too small. 

To recalculate Ic,  more accurately, it  is necessary first to obtain a solution for 
the recirculating flow. In  the small recompression region, the fluid from the lower 
part of the sublayer along 3 = 0 is turned back, with very little net change in 
the velocity profile since the pressure is the same just before and just after the 
turning. Thus a thin shear layer occurs along the wall behind a backward-facing 
step, or along the centre-line behind a wedge and also along the base. This re- 
circulating shear layer bounds an approximately triangular region where velocity 
gradients and therefore viscous stresses are considerably smaller. Burggraf 
(1970), Chang & Messiter (1968) and others have adapted Batchelor’s (1956) 
wake model for application to flows of this kind. Since the velocity along 3 = 0 
is O( U d ) ,  the Mach number in the core is O ( d )  and so the temperature and density 
are nearly uniform there. For this model the vorticity is then taken to be nearly 
constant, as in the incompressible case. The stream function is obtained to largest 
order as the solution to Poisson’s equation which satisfies the requirement of 
zero normal velocity a t  the boundaries of a triangular region. A form of the 
solution equivalent to that given by Chang & Messiter (1968) is 

(3.19) 
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where 55 is the vorticity. The boundary conditions are satisfied to the proper 
order, but not exactly. 

For a backward-facing step, Burggraf (1970) also carried out numerical solu- 
tions for the shear layers. The vorticity J was calculated by the procedure pro- 
posed by Batchelor (1956), by equating (a) the line integral of the square of the 
velocity obtained from (3.19) around the boundary of the region and (b )  the 
line integral of the velocity squared around the closed streamline $ = 0 ,  obtained 
from the solutions for the shear layers. The difference in boundary conditions for 
the step and the wedge would lead to larger vorticity in the recirculating flow 
behind the wedge, hence higher velocity on the dividing streamline, with corre- 
spondingly shorter shear layer and lower base pressure. Burggraf’s results are 
expressed by curves of UdflU us. 8, for specified values of &Im and T. For M, = 2.0 
and T = 0.1, his calculated value of UdJU is about 8 yo below the value found 
using (3.6)) (3.7) and (3.10) with the assumption k, = 0.8 suggested by the 
measured base pressures as plotted in figure 3. It is difficult to estimate k,  not 
only because of the scatter in the measured pressures, but also because the values 
of A for the data in figure 3 are not really large (the theory specifies A -+ a), k, 
as well as k, is unknown and P+ as defined by (3.9) does not include all the second- 
order terms. If the recirculating flow is in fact correctly described by Batchelor’s 
model, the 8 yo difference noted might well follow primarily from the inaccuracy 
in E,; a choice k, = 0.73 would give a S,JU consistent with Burggraf’s result. 

4. Pressure distribution at reattachment 
The assumption of a thin shear layer implies that recompression is accomplished 

in a distance which is asymptotically small compared with L as T --f 0 and R -+ a. 
It is not at all obvious from experimental results that the measured pressure 
rise can be considered to occur in a short distance, and so the reattachment 
region should be examined in greater detail. It will be shown that predicted and 
measured pressure distributions are in fairly good qualitative agreement. 

The proposed reattachment model can be described by a relatively simple set 
of approximate equations which will be derived by use of the order-of-magnitude 
statements summarized above following the second derivation of (2.16). In  
particular, the length of the reattachment region is found to be asymptotically 
large in comparison with its thickness. It is then anticipated that the first term 
in the pressure perturbation is independent of the a co-ordinate and, because the 
streamline inclination is small, that the magnitude of the velocity is approxi- 
mately equal to U.  Furthermore, since the entropy is nearly constant along each 
streamline, the velocity and density on a given streamline are functions only of 
the pressure, and the fluid which is turned back therefore has streamlines which 
are approximately symmetric about the line U = 0. The flow is as sketched in 
figure 4; the orders of magnitude and the location of the stagnation point remain 
to be discussed. 

The proper dependence on the parameters can be established quite directly 
from results already obtained. The pressure change 13, -pb  is given by (2.16) 
and the length Zt of the separated shear layer by (3.3). The forms of the velocity 
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- 
FIGURE 4. Asymptotic model for flow near reattachment. 

components U and V follow from the values just before reattachment given by 
(3.4) and U/E N 6, < 0. The thickness of the sublayer before reattachment can 
be found by balancing pE(a;lilaX) and ji(az;lilay2), with X measured by Xf. Since 
only the fluid in this sublayer experiences a relative change in ;21; which is not small, 
the same thickness is taken for the region of interest a t  reattachment. Finally, 
the length of the reattachment region is estimated by use of the continuity 
equation. This information can now be used to suggest suitable asymptotic 
representations. It is convenient to introduce stretched co-ordinates 2 and $j 
along and normal t o  the line ?i = 0 as follows: 

2 = .'(&Im - I)% [I + Q(Y - 1) &f2,]-87;84(% +hOrl)/L, 
$j = c$(M%- 1)&[1+&(7- i ) M % ] ~ 7 - k R g ~ / ~ - ~ Y ( f 2 ) .  

(4.1) 

(4.2) 

The definition of 2 is chosen so that the point B = 0 lies within the recompression 
region. I n  (4.2) the symmetry about U = 0 implies that Q = &Y(f2) a t  the dividing 
streamline, since $ = 0 a t  U = 0 by definition. The pressure and the velocity 
components are given by 

(4.3) 

(4.4) 

(4.5) 

I n  the limit as R -+ co and 7 --f co with 7RB 3 00 and 2 and 9 fixed, the largest 

g/pm - 1 + af(lM2, - I)-* [i + $(Y - 1) &f2,]-8 yN2, 7Qfj1(&) + . . . , 

a/ri - .~(~2m-i)~[1+g(y-1)lM~]-~7%51(f2,g)+ ... . 

- u/U N .t(M%- i)-i%-[l+&(y- 1)~%!2,]k~&~(&,$j)+..., 

terms in the differential equations give 
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The boundary and initial conditions are 
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Ql( - 9) = Ql($) ($0 6 $ < a), (4.8) 
Ql(%O) = 0, (4.9) 

Ql(%Q) Q (9 --f a), (4.10) 

%(&, Q)/Ql(% Q) @1@) - Q Y'(9) (9 3 a), (4.11) 

(4.12) 
where $ is defined by 

6, = a$/aQ, a1 = -a@% (4.13) 

and $ = 0 on the dividing streamline. The initial profile U,($) would be obtained 
from a solution for the separated shear layer, and has the property Ul+ 0 as 
$ -+ @, < 0. An approximation to U,($) might be obtained by evaluating (3.16) 
a t2  = h/-O,, with0,foundfrom (2.16)and(3.3).The condition(4.ll)isanalogous 
to (2.9). Since the streamline displacement is O(dR-kL), the velocity perturba- 
tion at  a given value of R*g/L, in the main part of the shear layer, is of order 
d U  and is caused by a displacement of streamlines rather than acceleration; 
i t  follows that the streamline slope depends only on 9 except in the sublayer 
defined by Q = O(1). 

Equations (4.6) and (4.7) are the 'inviscid boundary-layer equations' studied 
by Cole & Aroesty (1967) in the context of a boundary-layer blowing problem. 
The present problem differs in that Ql is specified as 2 -+ - 00 instead of 0, at 
Q = 0 and the region of interest is 0 < Q < co instead of 0 6 Q 6 iY (9 ) .  It will 
be convenient here to replace the co-ordinates and 9, respectively, by the 
stream function $ and by the value of $ at Q = 0 (i.e. at  ;52 = 0) ,  to be denoted by 
$*, where $, 6 @* 6 0. New variables Q and j3 are defined by 

#($*) = 81(% Qi(@*, $0 = Ql@, 9) (4.14) 

and the streamline location Q is regarded as a function of @* and $. Equations 
(4.6) and (4.7) are replaced by an equation for y^($*, $), found from (4.13), and 
the Bernoulli equation: 

$[% - iY(9)l  = 0, 

(4.15) 

$Q2($", $) +@(@*) = @(&, (4.16) 

where @($) can be obtained, from evaluation of (4.16) for $* -+ $,, as 

@($) @;($)+@b (4.17) 

as $* + 0, @($*) -+ 0 as @* +- 0 and so also and fib E j3($,). Since 13 -+ 

$jb = -&ot(O). For $ = 0 and $, 6 $* 6 0,  combining (4.15) and (4.16) gives 

(4.18) 

To find $-* as a function of 9, subtract (4.18) from (4.15), using (4.16), then dif- 
ferentiate with respect to $* and let $ -+ co: 

(4.19) 
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Using (4.16) and (4.11) gives 

The set (4.17), (4.18) and (4.20) permits solution for $3 as a function of B, provided 
the initial profde l?,($) is specified and some criterion is given for locating the 
origin 4 = 0; for example, one can specify Y - - $3$ + o( 1) as 4 -+ - 00. 

As $ + 0, expansion of (4.17) gives$($) - $o1(O) 81(0). It followsfrom (4.18) 
and (4.20) successively that Y = 0{( - $*)*) and 4 = O(l/( - $*)*I as $* 3 0; 
thus 2 + co and @,(a) = 0(1/a2) as @* --f 0. Setting as B + 03 in (4.3) 
and regrouping parameters yields 

- 

This form is consistent with (2.1) and (2.5), if the origin of co-ordinates is shifted 
such that X is replaced by X- h( - B0)-l in the definition of x. The expression 
(4.3) for ?IFm - 1 therefore has the possibility of matching, as 

Rid(5 + hBil)/L -+ co and R%(5 + hOi1)/L + 0, 

with a further (smaller) pressure change of order R-$ which is partly balanced by 
viscous forces and is described by the formulation of Stewartson & Williams 
(1969) summarized by (2.1)-(2.10). Unlessanunexpected cancellation takesplace, 
this result supports the belief that k,+ 0 in (3.8), so that a term of order R-a 
really does appear in F b / F m .  Burggraf (1970) similarly concluded that the stagna- 
tion point appears to occur asymptotically far downstream from the region 
described by inviscid-flow equations. 

As noted above, determination of the correct o1 would involve a numerical 
calculation such as Burggraf’s (1970), but the similarity form (3.16) would give 
a rough approximation to the correct profile. Such an approximation should be 
adequate at least for determining whether or not the proposed flow model gives 
a qualitatively correct prediction for the pressure variation at  reattachment. 
Further simplification follows from introduction of an approximation for f :  

(4.22) 

(4.23) 

This representation satisfies the following conditions: 6, - f as 3 + 00; 0, -+ 0 
as $ 3  $o < 0; Ol = U, at $ = 0; d ol/d$ continuous at  $ = 0. Values of Uo and 
$o can be found from the solution given by Rott & Hakkinen (1965), with the 
help of (2.16), (3.3), (3.18), (4.2), (4.4) and (4.13). The results are U, = [2f’3(O)]fr 
and $o = [21f’2(0)]8f( -00), where f ’ (0)  = 0.934 and f( -00) = - 1.258. Integra- 
tion then gives 
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FIGURE 5 .  Correlation of predicted and measured pressures near reattachment. -, 
Hama (1968); - - - -, Rom (1966); --, Chapman et al. (1958); ---, equation (4.24). 

(4.25) 

(4.26) 

The constant of integration in (4.24) has been chosen such that Y + -+ 0 as 
D -+ - co and so a straight-line extrapolation of the dividing streamline would 
intersect y  ̂ = 0 at  2 = 0. 

= 0 are shown in figure 5 
by plots of p1 m.2. I n  each case the shear-layer length X f  = h/ - 19, used to locate 
the origin B = 0 is from the second-order result 

Several measured pressure distributions along 

obtained from (3.5) in terms of the measured j$,. A second-order correction to 
(4.1) is obtained by starting with the second-order expression (3.10) for Pb and 
then following the same sequence of steps as was suggested previously for 
deriving (4.1). The revised form of (4.1) is 

(4.28) 

The data obtained by Hama (1968) and by Rom (1966) lie close to a single 
- j&,) < 0.6, implying fairly good correlation for the curve for 0.4 < (j?j - 
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shear-layer length and the maximum pressure gradient. The curves obtained 
from the measurements of Chapman et al. (1958) are shifted downstream and show 
greater variation in the maximum slope. All the curves are in qualitative agree- 
ment with respect to the relative rates of approach to the upstream and down- 
stream limiting values, with the exception that one set of Hama’s measurements 
shows a pressure overshoot. The approximate theoretical pressure distribution 
given by (4.24) is also plotted, for the values of U, and $,, already noted. The 
possibility of replacing these values with values based on an empirically de- 
termined k, was considered, but the resulting changes in the curve were found to 
be smaller than the variations among the experimental curves. The downstream 
position of the theoretical curve implies an inaccurate prediction of Zr/L, which 
is perhaps to be expected since the displacement of the dividing streamline = 0 
from a straight line i’j = h + 8,X/L has not been determined: an uncertainty o 
order R-$d in the position of $ = 0 implies an uncertainty of order one in the 
location of D = 0. It seems likely that the complicated details of the corner ex- 
pansion would lead to an initial downward displacement of the dividing stream- 
line which would contribute to this error. 

The successful correlation of the base pressure in figure 3is based on the approxi- 
mation that the pressure rise a t  reattachment occurs in a distance which is 
asymptotically small. In  spite of the various discrepancies noted in figure 5, 
there seems to be enough consistency, especially with respect to the correlation 
of maximum values of the pressure gradient (and therefore the length scale for 
reattachment), to justify an interpretation that the overall agreement here is 
favourable also. Thus it appears that the proposed asymptotic description, corre- 
sponding to (4.1)-(4.5), does correctly reproduce the main features of the flow 
near the reattachment for values of R of the order of lo5. 

Analogous flow models might be expected to provide correct asymptotic 
approximations for several other boundary-layer interaction problems. An 
analysis similar to that described here was carried out by Feo (1970) for a weak 
oblique shock wave incident upon a laminar boundary layer. If the relative 
pressure change across the incident shock is (17 - pW)pw = e, where R-& < e 4 1, 
much of the present discussion remains applicable, with the right side of (2.16) 
replaced by 2 ~ .  The length of the separated shear layer, and the corresponding 
‘pressure plateau’, is determined by the condition that the total pressure at  the 
dividing streamline reach a value equal to the pressure rise 2~13, across the 
incident shock and the complicated system of reflected waves. Reattachment is 
again described by (4.6) and (4.7) with solution given by (4.17), (4.18) and (4.20). 
For determining the order of magnitude of the shear-layer length, the flow close 
t o  the separation streamline $ = 0 can be approximated by the mixing of a nearly 
uniform shear flow with alow-speedrecirculating flow. It is found that Xf/L = O ( d )  ; 
reattachment occurs at  a distance O(R-k*L) downstream from the shock and the 
length of the reattachment region is O(R-k*L).  Similarly, for a forward-facing 
step of height h such that R-*L F, < R-%L, the pressure rise of order R-$pw at 
separation would be described by the analysis of Stewartson & Williams (1969), 
and separation would occur at a distance O(R3h) upstream from the step. The 
flow past a concave corner of angle 7 such that R-t 7 < 1 is more closely 
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analogous to that for an incident oblique shock, and so separation should occur 
a t  a distance O(r8L) upstream from the corner. 
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